Towards Total Recall in
Industrial Anomaly Detection

Karsten Roth, Latha Pemula, Joaquin Zepeda,
Bernhard Scholkopf , Thomas Brox, Peter Gehler

University of Tubingen, Amazon AWS

CVPR 2022 Report: Yu-Chen Lai
Data: 2022.10.28

Outline

e Introduction

e Method
1. Locally aware patch features
2. Coreset-reduced patch-feature memory bank
3. Anomaly Detection with PatchCore
e Experiments
1. Datasets
2. Evaluation Metrics
3. Anomaly Detection on MVTec AD
4. Inference Time
5. Ablations Study
6. Low-shot Anomaly Detection

1.1 Introduction

e Humans can differentiate between expected variance in the data and
outliers after having only seen a small number of normal instances.

1.1 Introduction

e Anomaly Detection for industrial image

Easy to acquire imagery of normal examples

But costly and complicated to specify the expected
defect variations in full.

O

@)

Category # Train
Carpet 280

o Grid 264
Z Leather 245
= Tile 230
Wood 247
Bottle 209
Cable 224
Capsule 219

o Hazelnut 391
2 Metal Nut 220
2 Pill 267
Screw 320
Toothbrush 60
Transistor 213
Zipper 240

Total 3629

1.1 Introduction

e Reconstruction-based
e C(lassification-based
e Distance-based

. A i
Train dd noise

normal

abnormal
Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. "Draem-a discriminatively trained reconstruction embedding
for surface anomaly detection.” Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

normal residual 5

1.1 Introduction

e Reconstruction-based
e C(lassification-based normal sample
e Distance-based .

0 : normal

Train

1 : abnormal

Tt T ;l;n:)r;ngl_sa_mgl; ___________________ .[GradCAM]

Chun-Liang Li, et al. "Cutpaste: Self-supervised learning for anomaly detection and localization." Proceedings of the 6
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

1.1 Introduction

e Reconstruction-based
e C(lassification-based
e Distance-based

Train l...
l e Pretrained CNN

normal samples e Self-supervised CNN

normal embeddings

{ CNN

Test

— Distance

abnormal sample
abnormal embeddings

2.1 Locally aware patch features

e Why pretrained model?

(CIFARI10) Geometric Imagenet pre-trained
Airplane N
Automobile : ;)

—40 -30 -20 -10 0 10 20 30 40 -30 -20 -10 0 10 20 0

Liron Bergman, Niv Cohen, and Yedid Hoshen. "Deep nearest neighbor anomaly detection.” arXiv preprint
arXiv:2002.10445 (2020).

2.1 Locally aware patch features

0: nominal, 1: anomalous
XN : the set of all nominal images (Vz € Ay : y. = 0)
AT : the set of samples provided at test time (V% € A7 : % € {0,1})

¢:A pre-trained network on ImageNet
o {ResNet50, WideResnet-50 }
o Pij= ¢5j($i), where z; € X

Train =-.H Pretrained CNN J———m

normal sample normal embeddings

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Richard C. Wilson, Edwin R. Hancock and
William A. P. Smith, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 87.1-87.12.
BMYVA Press, September 2016.

2.1 Locally aware patch features

e Embedding choices
1. Firstlevel
2. Middle level } [14,
3. Last level embedding [10, SPADE]- PaDim]

e Drawback of First level
o Too generic
e Drawbacks of Last level

o Too heavily biased towards ImageNet classification.
o Only little overlap with the industrial anomaly detection.

Low-Level
L,

Feature

Mid-Level
-

Feature

High-Level] |

Feature
L'

Trainable
Classifier

[10] Niv Cohen, and Yedid Hoshen. "Sub-image anomaly detection with deep pyramid correspondences.” arXiv preprint

arXiv:2005.02357 (2020).

[14] Thomas Defard, et al. "Padim: a patch distribution modeling framework for anomaly detection and localization."
International Conference on Pattern Recognition International Workshops and Challenges. Springer, Cham, 2021.
Matthew D. Zeiler, and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on

computer vision. Springer, Cham, 2014.

10

2.1 Locally aware patch features

o Assume the feature map p;.; € RE X xw

e Feature at position (7, w) (bzg(h w) = ¢j(x;, h,w) € R
- _whereh €{1,.. h}and’we{la---, *}

‘ (h, w)

Feature map

Image 11

2.1 Locally aware patch features

e Extend ¢i;(h,w) toaccount for an uneven patchsizes P , incorporating
feature vectors from the neighbourhood.
NF = {(a,b)la € [h = [p/2], ... h + |p/2]],

belw—|p/2],..,w+ |p/2]]}

Feature map

Image

12

2.1 Locally aware patch features

e Locally aware features at position (7, w)
as i (M) = fugs ({6150, b)](a,0) € N")})
with fage some aggregation function of feature vectors in the
neighbourhood A"

p=3

(h, w)

13

2.1 Locally aware patch features

e We use adaptive average pooling as Jage .
~ Similar to local smoothing over each individual feature map, and results
in one single representation at (7 w) of predefined dimensionality d.

P=3

Locally aware
fagg feature
y _ >

(1,d)

(9,¢%)

O15 (M) = fuge ({055(a,b)](a,b) € N}

2.1 Locally aware patch features

e We use adaptive average pooling as Jage .
~ Similar to local smoothing over each individual feature map, and results
in one single representation at (% w) of predefined dimensionality d.

P=3

Locally aware
fagg feature
y —_— >

(1,d)

(9,¢%)

s (M) = fs (sl bl D) €A™ Rgptugempap Locaffyayargfeatures

2.1 Locally aware patch features

e For a feature map tensor Dij , its locally aware patch-feature
i h,w

collection P, (p; ;) = {¢s,j(N"™)]

h,wmods=0,h < h*™,w<w*, h,w € N}

e with the optional use of a striding parameter S, which we set to 1

1

Locally aware features

(h*, w*, d)

(h* x w*, d)

locally aware
patch-feature
collection

Ps.p(Pij)

16

2.1 Locally aware patch features

Bi5 (NS) = fugg ({91400, D)l (a,0) € N}
P.s,p (057 2])

Pi,j

- ~{

eature maQ Locally aware features
(h*, w*, d) locally aware
patch-feature

(hgollect;o)

2.1 Locally aware patch features

e PatchCore uses only two intermediate feature hierarchies j and j +1.
e Achieve by bilinearly rescaling Ps,p(®i,j+1) such that Ps,p(Pij+1)l
and |Ps.p(®i,5)| match.

locally aware
patch-feature
collection

. /S
Layer j \ : H
=

| L
Layerj+ 1 Psp(bi)

Feature map

A N\ W N N\ —

SN NS\

L

2.1 Locally aware patch features /\

locally aware patch-
feature collection

We setd =1024

Feature map

Layer j }
®ij
(5,5,512) ///
NN
j + ilinear LW BB
v e T |
} — LU0
LU
P; j+1 Ps.p(bijt1) (5x5,1024) 19

(3,3,1024) (3x3,1024)

2.1 Locally aware patch features

locally aware patch-
feature collection

L

|

|

|

|
|
Layer j { |
|
|

4,

|
9p(¢7 3)

(5x5,1024)

Layerj+ 1 |

|

T\ e\ e\

4

Ps,p(¢i,j+1

(5x5,1024)

)

PS,p<¢i,j)
(5x5,2,1024)

L
)

}E>{|uu[u }

GlObal g p<¢7 J)

average (5x5,1024)
pooling

20

2.1 Locally aware patch features

e Finally, for all nominal training samples i € AN |, the PatchCore
memory bank M is then simply defined as

M= | Pop(d;(z))

gi'fr'éfﬁihé ... e
: PatchCore :

..

Test Sample

locally aware
patch features

Nominal Samples

- Memory Bank
. — .. M
U

Nearest Neighbour |
Search

locally aware
patch features

.4—‘

Pretrained Encoder

Anomaly Score

Anomaly ﬁ.‘\
. Segmentation

Layer j H Layer j+1]

Normal samples

Pretrained encoder

Memory bank

/

22

2.2. Coreset-reduced patch-feature memory bank

e Problem: For increasing sizes of ¥~, M becomes exceedingly large.

e Solution:
1. Reduce each image's feature size - [14, PaDiM]
m Lose significant information.
2. Reduce the number of samples
m Just like humans, only need to remember a small number of normal
samples.

[14] Thomas Defard, et al. "Padim: a patch distribution modeling framework for anomaly detection and
localization.” International Conference on Pattern Recognition International Workshops and Challenges. Springer,
Cham, 2021.

23

2.2. Coreset-reduced patch-feature memory bank

e Coreset selection :
o Find a subsetA C S such that problem solutions over A can be most closely
and especially more quickly approximated by those computed over S .
e Minimax facility location coreset selection[48]:

M¢ = argmin max min ||m — n|,
Mo CM meMneMce

where Mo : M-coreset

O O
© o
O

[48] Ozan Sener and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach.” In
International Conference on Learning Representations, 2018

24

2.2. Coreset-reduced patch-feature memory bank

e Coreset selection:

o Find a subsetA C S such that problem solutions over A can be most closely

and especially more quickly approximated by those computed over S .
e Minimax facility location coreset selection[48]:

M¢ = argmin max min ||m — n|,
Mo CM meMneMce

where Mo : M-coreset

‘O
O

O

O

O

O
O

O

O

O\

[48] Ozan Sener and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach.” In
International Conference on Learning Representations, 2018

3

2.2. Coreset-reduced patch-feature memory bank

e Coreset selection :
o Find a subsetA C S such that problem solutions over A can be most closely
and especially more quickly approximated by those computed over S .
e Minimax facility location coreset selection[48]:

M, = arg min max[min [[m—n 2]
Mo CM meM\neMc

where Mo : M-coreset

1 6 1 3
1
: e)

[48] Ozan Sener and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach.” In
International Conference on Learning Representations, 2018

2.2. Coreset-reduced patch-feature memory bank

e Coreset selection :
o Find a subsetA C S such that problem solutions over A can be most closely
and especially more quickly approximated by those computed over S .
e Minimax facility location coreset selection[48]:

Mg = arg min[max min [[m—n 2]
Mo CM meM neMce

where Mo : M-coreset

1 1
1 6 5
: e)

[48] Ozan Sener and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach.” In
International Conference on Learning Representations, 2018

2.2. Coreset-reduced patch-feature memory bank

e Coreset selection :
o Find a subsetA C S such that problem solutions over A can be most closely
and especially more quickly approximated by those computed over S .
e Minimax facility location coreset selection[48]:

Mg =(argmin max min [[m —n[,
MecCM meM neMce

where Mc: M-coreset M

/8 Mgl ’ * O\
1 1

1 g : :
: ® o © ,

[48] Ozan Sener and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach.” In
International Conference on Learning Representations, 2018

o

2.2. Coreset-reduced patch-feature memory bank

The exact computation of M¢ is

NP-Hard.
We use the iterative greedy

approximation suggested in [48].

.

© @

Algorithm 1: PatchCore memory bank.

Input: Pretrained ¢, hierarchies 7, nominal data
Xy, stride s, patchsize p, coreset target [,

random linear projection).

Output: Patch-level Memory bank M.
Algorithm:
M {}
for r; € Xy do

| M= MUPsp(95(2:))
end

/ * Apply greedy coreset selection.
Me « {}
foric [0,...,01 — 1] do

m; <= argmax min |[¢¥(m) — ¥(n)|,
meM-McgneMae

Me — Mo U {m;}

end
M~ Mg

*/

29

2.2. Coreset-reduced patch-feature memory bank

. * .
o The exact computation of MC 1S Algorithm 1: PatchCore memory bank.

NP-Hard. Input: Pretrained ¢, hierarchies 7, nominal data

. . Xy, stride s, patchsize p, coreset target [,
e We use the iterative greedy random linear projection ¢

approximation suggested in [48]. Output: Patch-level Memory bank M.
Algorithm:
M —{}
for r; € Xy do
| M= MUPs,(05(2i))

end
]_O /* Apply greedy coreset selection. *x/
y O Meyp
1 foric [0,...,01 — 1] do

m; <— argmax | min |[[¢(m) — w(n)HZ]
meM-MdneMao

Me — Mo U {m;}

end

M — Mg 30

2.2. Coreset-reduced patch-feature memory bank

. * .
o The exact computation of MC 1S Algorithm 1: PatchCore memory bank.

NP-Hard. Input: Pretrained ¢, hierarchies 7, nominal data

. . Xy, stride s, patchsize p, coreset target [,
e We use the iterative greedy random linear projection 4.

approximation suggested in [48]. Output: Patch-level Memory bank M.
Algorithm:
M —{}
for r; € Xy do
| M= MUPs,(05(2i))

end
/* Apply greedy coreset selection. */
4 Me « {}
1 forie [0,....,0 — 1] do

meM—-MeneMec

Me — Mo U {m;}

[mz- < argmax min |[[¢(m) —w(n)Hz]

end

M — Mg 31

2.2. Coreset-reduced patch-feature memory bank

e Comparison: coreset (top) vs. random subsampling (bottom)

Greedy Coreset

Random

Coverage: 5.0%

Coverage: 10.0%

Coverage: 20.0%

P 53 22 T : . .
O P B P LA
L ’ 3 .’ 3 I* ‘
I
.“»1:’? @ A ', w] #1 %
" - Iz L
.'& ¢ A#' 5 l% H 7
¥ b - » v X
bt t L - ¥ "é e ? # : .
b Y - * .
v Ty LR ¥ S MEL N %
RF AE g EE I
o F o . x 2
L] K g o * g & -

(a)

Multimodal distributions

Greedy Coreset

Random

Coverage: 2.0%

Coverage: 10.0%

oo vy e T AT
. TR Lt eyt e] Y
& {f Paakti e "..""‘4\ o)
X .§'j':;‘ v g
By g
AR R 2
8 ORI Ay
- -i'r'._*‘y_\ g - o
q;;;}.:f,}h X R
TAAS N

R s
PRl
PG

O

T R K
At
SR

R TR e

AL Aod basa

et TP
SO RAER N
Tl A RSy 2t
%‘.{%‘" v ?L‘“: h‘:&

(b)

uniform distributions

2.2. Coreset-reduced patch-feature memory bank

e QOverview of PatchCore

...

: [l Training

locally aware
patch features

Nominal Samples

5]
b b1 o

Pretrained Encoder

PatchCore

p

N

Memory Bank

Nearest Neighbour|
Search

D

..

‘[Testing Test Sample

XA
Pretrained Encoder
Anomaly Score

locally aware
patch features

04—‘

Anomaly

).

Segmentation

33

2.3. Anomaly Detection with PatchCore

e Image-level anomaly score S :

o Nominal patch-feature memory bank: M .

o Test image: 2.

o Test patch-features P(z'*") = P, p(¢; ("))

|
plest :> { i

=N

N— NN

7) (xtest

34

2.3. Anomaly Detection with PatchCore

e Image-level anomaly score S :

o Nominal patch-feature memory bank: M .
test

o Testimage: T .
o Test patch-features P(2'*") = Pg (5 ()
mtest,*’ m* — arg max Earg min Hmtest . mHz]
mtestep(mtest) meM

* test, *
o 5" =|m

- m*Hz O

e {% | o

73 (xtest) \C) 35

2.3. Anomaly Detection with PatchCore

e Image-level anomaly score S :

o Nominal patch-feature memory bank: M .
test

o Testimage: T .
o Test patch-features P(2'*") = Pg (5 ()
mtest,*’ m* — arg max Earg min Hmtest . mHz]
mtestep(mtest) meM

test, *

O S*: ||m

_m*Hz O
sEa= - C
= (EEEE | = Ceee

'P(xtest) C 36

2.3. Anomaly Detection with PatchCore

e Image-level anomaly score S :

Nominal patch-feature memory bank: M .
Test image: &
Test patch-features P (z'**)
mtest,*’ m* :[

©)

©)

©)

o § = ||m

m

test, x

plest :> { i

test, *

test

Ps.p(95 ()

arg max arg min Hmte“ — mHz]
mtestep(mtest] méeM
—m’ Hz
e L]
Bl _ =8
| = oommm = ooooo

7) (xtest)

S

¥

37

2.3. Anomaly Detection with PatchCore

e Image-level anomaly score S :

o To obtain S , we use scaling? onS" to account for the behaviour of
neighbour patches. w

test, *x

s—=11— eXp”m _m*HQ . g*
ZmGNb(m*) exp [[m'®t* — ml|,

with Mo(m”) the b nearest patch-features in M for test patch-

*

feature . m
Tntest,* m*O 1 2 Tntest,* m*
o—=O o ! oO——O O
|
w=0.5 : w=1 O

2.3. Anomaly Detection with PatchCore

e Pixel-level anomaly score:
o A segmentation map can be computed in the same step, similar to
[14, PaDiM]
o We upscale the result by bi-linear interpolation To match the
original input resolution.
o Smoothed the result with a Gaussian of kernel width 6 =4

1) o o
L 1

cmm
= [N =) Eertmee00n —>
N . %EE%EEE=EE Gaussian

L] %EEEE%E%E% kernel

test

original input resolution Anomaly heatmap 37

3.1 Experimental Details

e Dataset
o MVTec AD (MVTec Anomaly Detection benchmark)
o MTD (Magnetic Tile Defects)

Blowhole Crack Break Fray

o mSTC (Mini Shanghai Tech Campus)

Uneven Free

40

3.1 Experimental Details

e Dataset
o MVTec AD (MVTec Anomaly Detection benchmark)
o MTD (Magnetic Tile Defects)

o mSTC (Mini Shanghai Tech Campus)

UCSD Ped! Ped2

“NoFmality”

41

3.1 Evaluation Metrics

e Image-level performance
o AUROC
e Segmentation performance
o pixel-wise AUROC
o PRO score (Per-Region-Overlap)
e The PRO score takes into account the overlap and recovery of connected
anomaly components to better account for varying anomaly sizes in
MVTec AD

42

4.2. Anomaly Detection on MVTec AD

e Various levels of memory bank subsampling (25%, 10% and 1%)

Table 1. Anomaly Detection Performance (AUROC) on MVTec AD [5]. PaDiM™ denotes a result from [!4] with problem-specific
backbone selection. The total count of misclassifications was determined as the sum of false-positive and false-negative predictions given a
Fl-optimal threshold. We did not have individual anomaly scores for competing methods so could compute this number only for PatchCore.

| Method SPADE [10] | PatchSVDD [56] | DifferNet [12] | PaDiM [14] | Mah.AD [40] | PaDiM* [14] || Pdt(.hﬂore 25% | PatchCore—10% | PatchCore—1% |
AUROC 1 85.5 92.1 94.9 95.3 95.8 ';'!'? 9 99.0 99.0
Error | 14.5 79 5.1 4.7 4.2 L0 1.0
Misclassifications | - - - - - 47 49

Table 2. Anomaly Segmentation Performance (pixelwise AUROC) on MVTec AD [5].

| Method || AEssrar [5] | -VAE + grad. [17] | CAVGA-R,, 7] | PatchSVDD [56] | SPADE [10] | PaDiM [14] || PatchCore—25% | PatchCore—10% | PatchCore—1% |
87 88.8 89 95.7 96.0 97 5 98.1 98.1 98.0
Error | 13 11.2 11 43 4.0 1.9 1.9 2.0

Table 3. Anomaly Detection Performance on MVTec AD [5] as measured in PRO [%] [5, 10].

| Method || AEss7as [5] | Student [6] | SPADE [10] | PaDiM [14] || PatchCore—25% | PatchCore—10% | PatchCore—1% |
PRO 1 69.4 85.7 91.7 92 1 934 935 93.1
Error | 30.6 14.3 8.3 6.6 6.5 6.9

4.2. Anomaly Detection on MVTec AD

e we can apply PatchCore-1% on images of higher resolution (e.g.
280/320 instead of 224) and ensemble systems while retaining inferences

times less than PatchCore-10% on the default resolution.

Table 4. PatchCore-1% with higher resolution/larger back-
bones/ensembles. The coreset subsampling allows for computa-
tionally expensive setups while still retaining fast inference.

‘ Metric— H AUROC | pwAUROC ‘ PRO |
DenseN-201 & RNext-101 & WRN-101 (2+3), Imagesize 320
Score T 99.6 98.2 94.9
Error | 04 1.8 5.6
WRN-101 (2+3), Imagesize 280
Score 1 99.4 98.2 94.4
Error | 0.6 1.8 5.6
WRN-101 (142+3), Imagesize 280
Score T 99.2 98.4 95.0
Error | 0.8 1.6 5.0

4.3. Inference Time

Table 5. Mean inference time per image on MVTec AD. Scores

are (image AUROC, pixel AUROC, PRO metric).

Method PatchCore—100% PatchCore—10% | PatchCore—1%
Scores (99.1, 98.0, 93.3) (99.0,98.1,93.5) | (99.0,98.0,93.1)
Time (s) 0.6 0.22 0.17
Method | PatchCore—100% + IVFPQ SPADE PaDiM
Scores (98.0, 97.9, 93.0) (85.3,96.6,91.5) | (95.4,97.3,91.8)
Time (s) 0.2 0.66 0.19

45

4.4. Ablations Study

e Locally aware patch-features and hierarchies

Influence of neighbourhood sizes

0 99 1 =8~ Without Coreset 5 98.0
@) With Coreset =
£ 98 = 975
< .a
97 c
= 2 970
= 9% £
2 g 96.5
2 95 g —e— Without Coreset
e :{- 96.0 With Coreset
T T T T T T w T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Neighbourhood Neighbourhood
Dependence on feature hierarchies
100 U 985
9] g
o] & 980
&~ 981 =
=)
0 g 975
S 91 £
2 = 970
2 g £ %5
o 50
- - . - - . Y960 - - - - . .
1 2 3 1+2 2+3 1+2+3 1 2 3 1+2 2+3 1+2+3
Feature Hierarchies Used Feature Hierarchies Used

Figure 4. Local awareness and network feature depths vs. detec-
tion performance. PRO score results in the supplementary.

46

4.4. Ablations Study

e Importance of Coreset subsampling
o Greedy coreset selection
o Random subsampling

o Learnable subsampling
m Corresponding to the subsamphng target percentage Ptarget
m Sample proxies p; € P C R? with P| = Prarget M|

m Minimize a basis reconstruction objective
2

e”mi_pkHZ

Laclm) = |~ Y
ee (71 > o elmpillh
J

pLEP

2

47

t

LS

el
prEP p; EP

weight
e”m pk||2

‘pk;

|m; —pj |

2 P
0
O@OgLi
00
1. |3 @Ll
2. | 4 O
O
Qo @ -0
O ©0
O

48

4.4. Ablations Study

Importance of Coreset subsampling

Detection: AUROC

Figure 5. Performance retention for different subsamplers, results

100

95 1

90 - Coreset
—&— Random

—@— Learned

85

100 10-2
Subsampling Percentage

\O
@)

Segmentation: AUROC

95

for PRO score in the supplementary.

@ Coreset
—&— Random
—@— Learned

100 10-2

Subsampling Percentage

49

4.5. Low-shot Anomaly Detection

Shots per dataset s 10 51}:3053 per dataset 50 Shots per dataset
25 10 16 20 50 =0 0 e A 25 10 16 20 50
100 4 _P_n:'._ﬁf!_.ﬂ‘\ at 100% Il 1 v 98 '—:I—va. S()Tw - @I@ — Te
------------- F=====o = [p——— e ———— L —— - 92 Py -
O 95 LS = 97 < %t
'e) /r 5 B /([
& ~
5 (Diferet] * <9 - =T C % e =
= 85 L S g5 4= =
5 ¢ /" = Vi = 88 L
T 80)| = 2 /
-;: !L/ —4— PaDiM é 94 / —$— PaDiM] E‘C —4— PaDiM
a 7 .*/‘r —4— PatchCore-10 7 ?’3 93 ~4— PatchCore-10 | o3 86 —&4— PatchCore-10]|
o — spapE | 7 }(—4— SPADE —4— SPADE
; { 92 t } 84 } {
5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%
Total percentage used Total percentage used Total percentage used

Figure 6. PatchCore shows notably higher sample-efficiency than competitors, matching the previous state-of-the-art with a fraction of
nominal training data. Note that PaDiM and SPADE where reimplemented with WideResNet50 for comparability.

50

4.6. Evaluation on other benchmarks

Table 6. Anomaly Segmentation on mSTC [32,

detection on MTD |

] and anomaly

| compared to results reported in [42].

mSTC CAVGA-R, [52] | SPADE [10] | PaDiM [14] || PatchCore—10
Pixelwise AUROC %] 85 89.9 91.2 91.8

MTD GANomaly [2] | 1-NN[35] | DifferNet [2] || PatchCore—10
AUROC [%] 76.6 80.0 97.7 97.9

51

Thanks For Listening !

52

