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1.1 Introduction

● Humans can differentiate between expected variance in the data and 
outliers after having only seen a small number of normal instances.
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1.1 Introduction

● Anomaly Detection for industrial image 
○ Easy to acquire imagery of normal examples 
○ But costly and complicated to specify the expected 

defect variations in full. 
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1.1 Introduction

● Reconstruction-based
● Classification-based
● Distance-based

Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. "Draem-a discriminatively trained reconstruction embedding 
for surface anomaly detection." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
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1.1 Introduction

● Reconstruction-based
● Classification-based
● Distance-based

Chun-Liang Li, et al. "Cutpaste: Self-supervised learning for anomaly detection and localization." Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
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1.1 Introduction

● Reconstruction-based
● Classification-based
● Distance-based

CNN

● Pretrained CNN
● Self-supervised CNN
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2.1 Locally aware patch features

● Why pretrained model?

Liron Bergman, Niv Cohen, and Yedid Hoshen. "Deep nearest neighbor anomaly detection." arXiv preprint 
arXiv:2002.10445 (2020).
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2.1 Locally aware patch features

● 0: nominal, 1: anomalous
● : the set of all nominal images
● : the set of samples provided at test time
● : A pre-trained network on ImageNet

○ { ResNet50, WideResnet-50 }
● , where                     

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Richard C. Wilson, Edwin R. Hancock and 
William A. P. Smith, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 87.1-87.12. 
BMVA Press, September 2016.
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2.1 Locally aware patch features

● Embedding choices
1. First level
2. Middle level
3. Last level embedding [10, SPADE]

● Drawback of  First level
○ Too generic

● Drawbacks of  Last level
○ Too heavily biased towards ImageNet classification.
○ Only little overlap with the industrial anomaly detection. 

[14, 
PaDim]

[10] Niv Cohen, and Yedid Hoshen. "Sub-image anomaly detection with deep pyramid correspondences." arXiv preprint 
arXiv:2005.02357 (2020).
[14] Thomas Defard, et al. "Padim: a patch distribution modeling framework for anomaly detection and localization." 
International Conference on Pattern Recognition International Workshops and Challenges. Springer, Cham, 2021.
Matthew D. Zeiler, and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on 
computer vision. Springer, Cham, 2014.
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2.1 Locally aware patch features

● Assume the feature map
● Feature at position            : 
● , where                               and                     

layer 1 ~ j
(h, w)

Feature map
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2.1 Locally aware patch features

● Extend                      to account for an uneven patchsizes     , incorporating 
feature vectors from the neighbourhood.

= 3

(h, w)

Feature map

Image
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2.1 Locally aware patch features

(h, w)

● Locally aware features at position 
● as                                                                                       
● with           some aggregation function of feature vectors in the 

neighbourhood 

= 3
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2.1 Locally aware patch features

● We use adaptive average pooling as         . 
● Similar to local smoothing over each individual feature map, and results 

in one single representation at            of predefined dimensionality    .

Locally aware 
feature

= 3
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2.1 Locally aware patch features

● We use adaptive average pooling as         . 
● Similar to local smoothing over each individual feature map, and results 

in one single representation at            of predefined dimensionality    .

Locally aware 
feature

= 3
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2.1 Locally aware patch features

● For a feature map tensor         , its locally aware patch-feature 
collection

● with the optional use of a striding parameter    , which we set to 1

{ }
Locally aware features

locally aware 
patch-feature 

collection
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2.1 Locally aware patch features

{ }

Locally aware features
locally aware 
patch-feature 
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17



2.1 Locally aware patch features

● PatchCore uses only two intermediate feature hierarchies j and j +1.
● Achieve by bilinearly rescaling such that                           

and                       match.

Layer j

Layer j + 1

Feature map

{ }

locally aware 
patch-feature 

collection
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2.1 Locally aware patch features

Layer j

Layer j + 1

Feature map

{ }

locally aware patch-
feature collection

（5, 5, 512）

（3, 3, 1024）

{ }
bilinearly 
rescaling { }

（5 x 5, 1024）

（3 x 3, 1024）
（5 x 5, 1024） 19
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2.1 Locally aware patch features

Layer j

Layer j + 1

{ }

locally aware patch-
feature collection

{ }
（5 x 5, 1024）

（5 x 5, 1024） { }

（5 x 5, 2, 1024）

{ }
（5 x 5, 1024）

Global 
average 
pooling
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2.1 Locally aware patch features

● Finally, for all nominal training samples                    , the PatchCore 
memory bank is then simply defined as
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2.2. Coreset-reduced patch-feature memory bank

● Problem: For increasing sizes of       ,        becomes exceedingly large.
● Solution:

1. Reduce each image's feature size - [14, PaDiM]
■ Lose significant information.

2. Reduce the number of samples
■ Just like humans, only need to remember a small number of normal 

samples.

[14] Thomas Defard, et al. "Padim: a patch distribution modeling framework for anomaly detection and 
localization." International Conference on Pattern Recognition International Workshops and Challenges. Springer, 
Cham, 2021.
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2.2. Coreset-reduced patch-feature memory bank

● Coreset selection : 
○ Find a subset               such that problem solutions over      can be most closely

and especially more quickly approximated by those computed over  .
● Minimax facility location coreset selection[48]:
● J
● h
● where           :        -coreset

[48] Ozan Sener and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach." In 
International Conference on Learning Representations, 2018
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2.2. Coreset-reduced patch-feature memory bank

● The exact computation of           is 
NP-Hard.

● We use the iterative greedy 
approximation suggested in [48].
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2.2. Coreset-reduced patch-feature memory bank
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2.2. Coreset-reduced patch-feature memory bank

● The exact computation of           is 
NP-Hard.

● We use the iterative greedy
approximation suggested in [48].
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2.2. Coreset-reduced patch-feature memory bank

● Comparison:  coreset (top) vs. random subsampling (bottom)

Multimodal distributions                       uniform distributions 32



2.2. Coreset-reduced patch-feature memory bank

● Overview of PatchCore
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2.3. Anomaly Detection with PatchCore

● Image-level anomaly score    :
○ Nominal patch-feature memory bank:       .
○ Test image:         . 
○ Test patch-features       

34
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2.3. Anomaly Detection with PatchCore

● Image-level anomaly score    :
○ To obtain     , we use scaling      on      to account for the behaviour of 

neighbour patches.

○ with                the     nearest patch-features in        for test patch-
feature        .      

38
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2.3. Anomaly Detection with PatchCore

39

● Pixel-level anomaly score:
○ A segmentation map can be computed in the same step, similar to 

[14, PaDiM]
○ We upscale the result by bi-linear interpolation To match the 

original input resolution.
○ Smoothed the result with a Gaussian of kernel width σ = 4

original input resolution Anomaly  heatmap

Gaussian
kernel



3.1 Experimental Details

● Dataset
○ MVTec AD (MVTec Anomaly Detection benchmark)
○ MTD (Magnetic Tile Defects)

○ mSTC (Mini Shanghai Tech Campus)     
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3.1 Evaluation Metrics

● Image-level performance
○ AUROC

● Segmentation performance
○ pixel-wise AUROC
○ PRO score (Per-Region-Overlap)

● The PRO score takes into account the overlap and recovery of connected 
anomaly components to better account for varying anomaly sizes in 
MVTec AD
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4.2. Anomaly Detection on MVTec AD

● Various levels of memory bank subsampling (25%, 10% and 1%)
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4.2. Anomaly Detection on MVTec AD

● we can apply PatchCore−1% on images of higher resolution (e.g. 
280/320 instead of 224) and ensemble systems while retaining inferences 
times less than PatchCore−10% on the default resolution.
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4.3. Inference Time
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4.4. Ablations Study
● Locally aware patch-features and hierarchies
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4.4. Ablations Study

● Importance of Coreset subsampling
○ Greedy coreset selection
○ Random subsampling
○ Learnable subsampling

■ Corresponding to the subsampling target percentage
■ Sample proxies                               with
■ Minimize a basis reconstruction objective    
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4.4. Ablations Study
● Importance of Coreset subsampling
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4.5. Low-shot Anomaly Detection
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4.6. Evaluation on other benchmarks
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Thanks For Listening !
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